3.37 \(\int \frac{A+B \log (e (\frac{a+b x}{c+d x})^n)}{(c g+d g x)^5} \, dx\)

Optimal. Leaf size=215 \[ -\frac{B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )+A}{4 d g^5 (c+d x)^4}+\frac{b^3 B n}{4 d g^5 (c+d x) (b c-a d)^3}+\frac{b^2 B n}{8 d g^5 (c+d x)^2 (b c-a d)^2}+\frac{b^4 B n \log (a+b x)}{4 d g^5 (b c-a d)^4}-\frac{b^4 B n \log (c+d x)}{4 d g^5 (b c-a d)^4}+\frac{b B n}{12 d g^5 (c+d x)^3 (b c-a d)}+\frac{B n}{16 d g^5 (c+d x)^4} \]

[Out]

(B*n)/(16*d*g^5*(c + d*x)^4) + (b*B*n)/(12*d*(b*c - a*d)*g^5*(c + d*x)^3) + (b^2*B*n)/(8*d*(b*c - a*d)^2*g^5*(
c + d*x)^2) + (b^3*B*n)/(4*d*(b*c - a*d)^3*g^5*(c + d*x)) + (b^4*B*n*Log[a + b*x])/(4*d*(b*c - a*d)^4*g^5) - (
A + B*Log[e*((a + b*x)/(c + d*x))^n])/(4*d*g^5*(c + d*x)^4) - (b^4*B*n*Log[c + d*x])/(4*d*(b*c - a*d)^4*g^5)

________________________________________________________________________________________

Rubi [A]  time = 0.175639, antiderivative size = 215, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {2525, 12, 44} \[ -\frac{B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )+A}{4 d g^5 (c+d x)^4}+\frac{b^3 B n}{4 d g^5 (c+d x) (b c-a d)^3}+\frac{b^2 B n}{8 d g^5 (c+d x)^2 (b c-a d)^2}+\frac{b^4 B n \log (a+b x)}{4 d g^5 (b c-a d)^4}-\frac{b^4 B n \log (c+d x)}{4 d g^5 (b c-a d)^4}+\frac{b B n}{12 d g^5 (c+d x)^3 (b c-a d)}+\frac{B n}{16 d g^5 (c+d x)^4} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Log[e*((a + b*x)/(c + d*x))^n])/(c*g + d*g*x)^5,x]

[Out]

(B*n)/(16*d*g^5*(c + d*x)^4) + (b*B*n)/(12*d*(b*c - a*d)*g^5*(c + d*x)^3) + (b^2*B*n)/(8*d*(b*c - a*d)^2*g^5*(
c + d*x)^2) + (b^3*B*n)/(4*d*(b*c - a*d)^3*g^5*(c + d*x)) + (b^4*B*n*Log[a + b*x])/(4*d*(b*c - a*d)^4*g^5) - (
A + B*Log[e*((a + b*x)/(c + d*x))^n])/(4*d*g^5*(c + d*x)^4) - (b^4*B*n*Log[c + d*x])/(4*d*(b*c - a*d)^4*g^5)

Rule 2525

Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[((d + e*x)^(m
+ 1)*(a + b*Log[c*RFx^p])^n)/(e*(m + 1)), x] - Dist[(b*n*p)/(e*(m + 1)), Int[SimplifyIntegrand[((d + e*x)^(m +
 1)*(a + b*Log[c*RFx^p])^(n - 1)*D[RFx, x])/RFx, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && RationalFunc
tionQ[RFx, x] && IGtQ[n, 0] && (EqQ[n, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{(c g+d g x)^5} \, dx &=-\frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{4 d g^5 (c+d x)^4}+\frac{(B n) \int \frac{b c-a d}{g^4 (a+b x) (c+d x)^5} \, dx}{4 d g}\\ &=-\frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{4 d g^5 (c+d x)^4}+\frac{(B (b c-a d) n) \int \frac{1}{(a+b x) (c+d x)^5} \, dx}{4 d g^5}\\ &=-\frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{4 d g^5 (c+d x)^4}+\frac{(B (b c-a d) n) \int \left (\frac{b^5}{(b c-a d)^5 (a+b x)}-\frac{d}{(b c-a d) (c+d x)^5}-\frac{b d}{(b c-a d)^2 (c+d x)^4}-\frac{b^2 d}{(b c-a d)^3 (c+d x)^3}-\frac{b^3 d}{(b c-a d)^4 (c+d x)^2}-\frac{b^4 d}{(b c-a d)^5 (c+d x)}\right ) \, dx}{4 d g^5}\\ &=\frac{B n}{16 d g^5 (c+d x)^4}+\frac{b B n}{12 d (b c-a d) g^5 (c+d x)^3}+\frac{b^2 B n}{8 d (b c-a d)^2 g^5 (c+d x)^2}+\frac{b^3 B n}{4 d (b c-a d)^3 g^5 (c+d x)}+\frac{b^4 B n \log (a+b x)}{4 d (b c-a d)^4 g^5}-\frac{A+B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )}{4 d g^5 (c+d x)^4}-\frac{b^4 B n \log (c+d x)}{4 d (b c-a d)^4 g^5}\\ \end{align*}

Mathematica [A]  time = 0.237246, size = 162, normalized size = 0.75 \[ \frac{\frac{B n \left (\frac{12 b^3 (b c-a d)}{c+d x}+\frac{6 b^2 (b c-a d)^2}{(c+d x)^2}+12 b^4 \log (a+b x)+\frac{4 b (b c-a d)^3}{(c+d x)^3}+\frac{3 (b c-a d)^4}{(c+d x)^4}-12 b^4 \log (c+d x)\right )}{12 (b c-a d)^4}-\frac{B \log \left (e \left (\frac{a+b x}{c+d x}\right )^n\right )+A}{(c+d x)^4}}{4 d g^5} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Log[e*((a + b*x)/(c + d*x))^n])/(c*g + d*g*x)^5,x]

[Out]

(-((A + B*Log[e*((a + b*x)/(c + d*x))^n])/(c + d*x)^4) + (B*n*((3*(b*c - a*d)^4)/(c + d*x)^4 + (4*b*(b*c - a*d
)^3)/(c + d*x)^3 + (6*b^2*(b*c - a*d)^2)/(c + d*x)^2 + (12*b^3*(b*c - a*d))/(c + d*x) + 12*b^4*Log[a + b*x] -
12*b^4*Log[c + d*x]))/(12*(b*c - a*d)^4))/(4*d*g^5)

________________________________________________________________________________________

Maple [F]  time = 0.455, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{ \left ( dgx+cg \right ) ^{5}} \left ( A+B\ln \left ( e \left ({\frac{bx+a}{dx+c}} \right ) ^{n} \right ) \right ) }\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*ln(e*((b*x+a)/(d*x+c))^n))/(d*g*x+c*g)^5,x)

[Out]

int((A+B*ln(e*((b*x+a)/(d*x+c))^n))/(d*g*x+c*g)^5,x)

________________________________________________________________________________________

Maxima [B]  time = 1.25488, size = 880, normalized size = 4.09 \begin{align*} \frac{1}{48} \, B n{\left (\frac{12 \, b^{3} d^{3} x^{3} + 25 \, b^{3} c^{3} - 23 \, a b^{2} c^{2} d + 13 \, a^{2} b c d^{2} - 3 \, a^{3} d^{3} + 6 \,{\left (7 \, b^{3} c d^{2} - a b^{2} d^{3}\right )} x^{2} + 4 \,{\left (13 \, b^{3} c^{2} d - 5 \, a b^{2} c d^{2} + a^{2} b d^{3}\right )} x}{{\left (b^{3} c^{3} d^{5} - 3 \, a b^{2} c^{2} d^{6} + 3 \, a^{2} b c d^{7} - a^{3} d^{8}\right )} g^{5} x^{4} + 4 \,{\left (b^{3} c^{4} d^{4} - 3 \, a b^{2} c^{3} d^{5} + 3 \, a^{2} b c^{2} d^{6} - a^{3} c d^{7}\right )} g^{5} x^{3} + 6 \,{\left (b^{3} c^{5} d^{3} - 3 \, a b^{2} c^{4} d^{4} + 3 \, a^{2} b c^{3} d^{5} - a^{3} c^{2} d^{6}\right )} g^{5} x^{2} + 4 \,{\left (b^{3} c^{6} d^{2} - 3 \, a b^{2} c^{5} d^{3} + 3 \, a^{2} b c^{4} d^{4} - a^{3} c^{3} d^{5}\right )} g^{5} x +{\left (b^{3} c^{7} d - 3 \, a b^{2} c^{6} d^{2} + 3 \, a^{2} b c^{5} d^{3} - a^{3} c^{4} d^{4}\right )} g^{5}} + \frac{12 \, b^{4} \log \left (b x + a\right )}{{\left (b^{4} c^{4} d - 4 \, a b^{3} c^{3} d^{2} + 6 \, a^{2} b^{2} c^{2} d^{3} - 4 \, a^{3} b c d^{4} + a^{4} d^{5}\right )} g^{5}} - \frac{12 \, b^{4} \log \left (d x + c\right )}{{\left (b^{4} c^{4} d - 4 \, a b^{3} c^{3} d^{2} + 6 \, a^{2} b^{2} c^{2} d^{3} - 4 \, a^{3} b c d^{4} + a^{4} d^{5}\right )} g^{5}}\right )} - \frac{B \log \left (e{\left (\frac{b x}{d x + c} + \frac{a}{d x + c}\right )}^{n}\right )}{4 \,{\left (d^{5} g^{5} x^{4} + 4 \, c d^{4} g^{5} x^{3} + 6 \, c^{2} d^{3} g^{5} x^{2} + 4 \, c^{3} d^{2} g^{5} x + c^{4} d g^{5}\right )}} - \frac{A}{4 \,{\left (d^{5} g^{5} x^{4} + 4 \, c d^{4} g^{5} x^{3} + 6 \, c^{2} d^{3} g^{5} x^{2} + 4 \, c^{3} d^{2} g^{5} x + c^{4} d g^{5}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*log(e*((b*x+a)/(d*x+c))^n))/(d*g*x+c*g)^5,x, algorithm="maxima")

[Out]

1/48*B*n*((12*b^3*d^3*x^3 + 25*b^3*c^3 - 23*a*b^2*c^2*d + 13*a^2*b*c*d^2 - 3*a^3*d^3 + 6*(7*b^3*c*d^2 - a*b^2*
d^3)*x^2 + 4*(13*b^3*c^2*d - 5*a*b^2*c*d^2 + a^2*b*d^3)*x)/((b^3*c^3*d^5 - 3*a*b^2*c^2*d^6 + 3*a^2*b*c*d^7 - a
^3*d^8)*g^5*x^4 + 4*(b^3*c^4*d^4 - 3*a*b^2*c^3*d^5 + 3*a^2*b*c^2*d^6 - a^3*c*d^7)*g^5*x^3 + 6*(b^3*c^5*d^3 - 3
*a*b^2*c^4*d^4 + 3*a^2*b*c^3*d^5 - a^3*c^2*d^6)*g^5*x^2 + 4*(b^3*c^6*d^2 - 3*a*b^2*c^5*d^3 + 3*a^2*b*c^4*d^4 -
 a^3*c^3*d^5)*g^5*x + (b^3*c^7*d - 3*a*b^2*c^6*d^2 + 3*a^2*b*c^5*d^3 - a^3*c^4*d^4)*g^5) + 12*b^4*log(b*x + a)
/((b^4*c^4*d - 4*a*b^3*c^3*d^2 + 6*a^2*b^2*c^2*d^3 - 4*a^3*b*c*d^4 + a^4*d^5)*g^5) - 12*b^4*log(d*x + c)/((b^4
*c^4*d - 4*a*b^3*c^3*d^2 + 6*a^2*b^2*c^2*d^3 - 4*a^3*b*c*d^4 + a^4*d^5)*g^5)) - 1/4*B*log(e*(b*x/(d*x + c) + a
/(d*x + c))^n)/(d^5*g^5*x^4 + 4*c*d^4*g^5*x^3 + 6*c^2*d^3*g^5*x^2 + 4*c^3*d^2*g^5*x + c^4*d*g^5) - 1/4*A/(d^5*
g^5*x^4 + 4*c*d^4*g^5*x^3 + 6*c^2*d^3*g^5*x^2 + 4*c^3*d^2*g^5*x + c^4*d*g^5)

________________________________________________________________________________________

Fricas [B]  time = 0.999619, size = 1505, normalized size = 7. \begin{align*} -\frac{12 \, A b^{4} c^{4} - 48 \, A a b^{3} c^{3} d + 72 \, A a^{2} b^{2} c^{2} d^{2} - 48 \, A a^{3} b c d^{3} + 12 \, A a^{4} d^{4} - 12 \,{\left (B b^{4} c d^{3} - B a b^{3} d^{4}\right )} n x^{3} - 6 \,{\left (7 \, B b^{4} c^{2} d^{2} - 8 \, B a b^{3} c d^{3} + B a^{2} b^{2} d^{4}\right )} n x^{2} - 4 \,{\left (13 \, B b^{4} c^{3} d - 18 \, B a b^{3} c^{2} d^{2} + 6 \, B a^{2} b^{2} c d^{3} - B a^{3} b d^{4}\right )} n x -{\left (25 \, B b^{4} c^{4} - 48 \, B a b^{3} c^{3} d + 36 \, B a^{2} b^{2} c^{2} d^{2} - 16 \, B a^{3} b c d^{3} + 3 \, B a^{4} d^{4}\right )} n + 12 \,{\left (B b^{4} c^{4} - 4 \, B a b^{3} c^{3} d + 6 \, B a^{2} b^{2} c^{2} d^{2} - 4 \, B a^{3} b c d^{3} + B a^{4} d^{4}\right )} \log \left (e\right ) - 12 \,{\left (B b^{4} d^{4} n x^{4} + 4 \, B b^{4} c d^{3} n x^{3} + 6 \, B b^{4} c^{2} d^{2} n x^{2} + 4 \, B b^{4} c^{3} d n x +{\left (4 \, B a b^{3} c^{3} d - 6 \, B a^{2} b^{2} c^{2} d^{2} + 4 \, B a^{3} b c d^{3} - B a^{4} d^{4}\right )} n\right )} \log \left (\frac{b x + a}{d x + c}\right )}{48 \,{\left ({\left (b^{4} c^{4} d^{5} - 4 \, a b^{3} c^{3} d^{6} + 6 \, a^{2} b^{2} c^{2} d^{7} - 4 \, a^{3} b c d^{8} + a^{4} d^{9}\right )} g^{5} x^{4} + 4 \,{\left (b^{4} c^{5} d^{4} - 4 \, a b^{3} c^{4} d^{5} + 6 \, a^{2} b^{2} c^{3} d^{6} - 4 \, a^{3} b c^{2} d^{7} + a^{4} c d^{8}\right )} g^{5} x^{3} + 6 \,{\left (b^{4} c^{6} d^{3} - 4 \, a b^{3} c^{5} d^{4} + 6 \, a^{2} b^{2} c^{4} d^{5} - 4 \, a^{3} b c^{3} d^{6} + a^{4} c^{2} d^{7}\right )} g^{5} x^{2} + 4 \,{\left (b^{4} c^{7} d^{2} - 4 \, a b^{3} c^{6} d^{3} + 6 \, a^{2} b^{2} c^{5} d^{4} - 4 \, a^{3} b c^{4} d^{5} + a^{4} c^{3} d^{6}\right )} g^{5} x +{\left (b^{4} c^{8} d - 4 \, a b^{3} c^{7} d^{2} + 6 \, a^{2} b^{2} c^{6} d^{3} - 4 \, a^{3} b c^{5} d^{4} + a^{4} c^{4} d^{5}\right )} g^{5}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*log(e*((b*x+a)/(d*x+c))^n))/(d*g*x+c*g)^5,x, algorithm="fricas")

[Out]

-1/48*(12*A*b^4*c^4 - 48*A*a*b^3*c^3*d + 72*A*a^2*b^2*c^2*d^2 - 48*A*a^3*b*c*d^3 + 12*A*a^4*d^4 - 12*(B*b^4*c*
d^3 - B*a*b^3*d^4)*n*x^3 - 6*(7*B*b^4*c^2*d^2 - 8*B*a*b^3*c*d^3 + B*a^2*b^2*d^4)*n*x^2 - 4*(13*B*b^4*c^3*d - 1
8*B*a*b^3*c^2*d^2 + 6*B*a^2*b^2*c*d^3 - B*a^3*b*d^4)*n*x - (25*B*b^4*c^4 - 48*B*a*b^3*c^3*d + 36*B*a^2*b^2*c^2
*d^2 - 16*B*a^3*b*c*d^3 + 3*B*a^4*d^4)*n + 12*(B*b^4*c^4 - 4*B*a*b^3*c^3*d + 6*B*a^2*b^2*c^2*d^2 - 4*B*a^3*b*c
*d^3 + B*a^4*d^4)*log(e) - 12*(B*b^4*d^4*n*x^4 + 4*B*b^4*c*d^3*n*x^3 + 6*B*b^4*c^2*d^2*n*x^2 + 4*B*b^4*c^3*d*n
*x + (4*B*a*b^3*c^3*d - 6*B*a^2*b^2*c^2*d^2 + 4*B*a^3*b*c*d^3 - B*a^4*d^4)*n)*log((b*x + a)/(d*x + c)))/((b^4*
c^4*d^5 - 4*a*b^3*c^3*d^6 + 6*a^2*b^2*c^2*d^7 - 4*a^3*b*c*d^8 + a^4*d^9)*g^5*x^4 + 4*(b^4*c^5*d^4 - 4*a*b^3*c^
4*d^5 + 6*a^2*b^2*c^3*d^6 - 4*a^3*b*c^2*d^7 + a^4*c*d^8)*g^5*x^3 + 6*(b^4*c^6*d^3 - 4*a*b^3*c^5*d^4 + 6*a^2*b^
2*c^4*d^5 - 4*a^3*b*c^3*d^6 + a^4*c^2*d^7)*g^5*x^2 + 4*(b^4*c^7*d^2 - 4*a*b^3*c^6*d^3 + 6*a^2*b^2*c^5*d^4 - 4*
a^3*b*c^4*d^5 + a^4*c^3*d^6)*g^5*x + (b^4*c^8*d - 4*a*b^3*c^7*d^2 + 6*a^2*b^2*c^6*d^3 - 4*a^3*b*c^5*d^4 + a^4*
c^4*d^5)*g^5)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*ln(e*((b*x+a)/(d*x+c))**n))/(d*g*x+c*g)**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.34134, size = 1038, normalized size = 4.83 \begin{align*} \frac{B b^{4} n \log \left (b x + a\right )}{4 \,{\left (b^{4} c^{4} d g^{5} - 4 \, a b^{3} c^{3} d^{2} g^{5} + 6 \, a^{2} b^{2} c^{2} d^{3} g^{5} - 4 \, a^{3} b c d^{4} g^{5} + a^{4} d^{5} g^{5}\right )}} - \frac{B b^{4} n \log \left (d x + c\right )}{4 \,{\left (b^{4} c^{4} d g^{5} - 4 \, a b^{3} c^{3} d^{2} g^{5} + 6 \, a^{2} b^{2} c^{2} d^{3} g^{5} - 4 \, a^{3} b c d^{4} g^{5} + a^{4} d^{5} g^{5}\right )}} - \frac{B n \log \left (\frac{b x + a}{d x + c}\right )}{4 \,{\left (d^{5} g^{5} x^{4} + 4 \, c d^{4} g^{5} x^{3} + 6 \, c^{2} d^{3} g^{5} x^{2} + 4 \, c^{3} d^{2} g^{5} x + c^{4} d g^{5}\right )}} + \frac{12 \, B b^{3} d^{3} n x^{3} + 42 \, B b^{3} c d^{2} n x^{2} - 6 \, B a b^{2} d^{3} n x^{2} + 52 \, B b^{3} c^{2} d n x - 20 \, B a b^{2} c d^{2} n x + 4 \, B a^{2} b d^{3} n x + 25 \, B b^{3} c^{3} n - 23 \, B a b^{2} c^{2} d n + 13 \, B a^{2} b c d^{2} n - 3 \, B a^{3} d^{3} n - 12 \, A b^{3} c^{3} - 12 \, B b^{3} c^{3} + 36 \, A a b^{2} c^{2} d + 36 \, B a b^{2} c^{2} d - 36 \, A a^{2} b c d^{2} - 36 \, B a^{2} b c d^{2} + 12 \, A a^{3} d^{3} + 12 \, B a^{3} d^{3}}{48 \,{\left (b^{3} c^{3} d^{5} g^{5} x^{4} - 3 \, a b^{2} c^{2} d^{6} g^{5} x^{4} + 3 \, a^{2} b c d^{7} g^{5} x^{4} - a^{3} d^{8} g^{5} x^{4} + 4 \, b^{3} c^{4} d^{4} g^{5} x^{3} - 12 \, a b^{2} c^{3} d^{5} g^{5} x^{3} + 12 \, a^{2} b c^{2} d^{6} g^{5} x^{3} - 4 \, a^{3} c d^{7} g^{5} x^{3} + 6 \, b^{3} c^{5} d^{3} g^{5} x^{2} - 18 \, a b^{2} c^{4} d^{4} g^{5} x^{2} + 18 \, a^{2} b c^{3} d^{5} g^{5} x^{2} - 6 \, a^{3} c^{2} d^{6} g^{5} x^{2} + 4 \, b^{3} c^{6} d^{2} g^{5} x - 12 \, a b^{2} c^{5} d^{3} g^{5} x + 12 \, a^{2} b c^{4} d^{4} g^{5} x - 4 \, a^{3} c^{3} d^{5} g^{5} x + b^{3} c^{7} d g^{5} - 3 \, a b^{2} c^{6} d^{2} g^{5} + 3 \, a^{2} b c^{5} d^{3} g^{5} - a^{3} c^{4} d^{4} g^{5}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*log(e*((b*x+a)/(d*x+c))^n))/(d*g*x+c*g)^5,x, algorithm="giac")

[Out]

1/4*B*b^4*n*log(b*x + a)/(b^4*c^4*d*g^5 - 4*a*b^3*c^3*d^2*g^5 + 6*a^2*b^2*c^2*d^3*g^5 - 4*a^3*b*c*d^4*g^5 + a^
4*d^5*g^5) - 1/4*B*b^4*n*log(d*x + c)/(b^4*c^4*d*g^5 - 4*a*b^3*c^3*d^2*g^5 + 6*a^2*b^2*c^2*d^3*g^5 - 4*a^3*b*c
*d^4*g^5 + a^4*d^5*g^5) - 1/4*B*n*log((b*x + a)/(d*x + c))/(d^5*g^5*x^4 + 4*c*d^4*g^5*x^3 + 6*c^2*d^3*g^5*x^2
+ 4*c^3*d^2*g^5*x + c^4*d*g^5) + 1/48*(12*B*b^3*d^3*n*x^3 + 42*B*b^3*c*d^2*n*x^2 - 6*B*a*b^2*d^3*n*x^2 + 52*B*
b^3*c^2*d*n*x - 20*B*a*b^2*c*d^2*n*x + 4*B*a^2*b*d^3*n*x + 25*B*b^3*c^3*n - 23*B*a*b^2*c^2*d*n + 13*B*a^2*b*c*
d^2*n - 3*B*a^3*d^3*n - 12*A*b^3*c^3 - 12*B*b^3*c^3 + 36*A*a*b^2*c^2*d + 36*B*a*b^2*c^2*d - 36*A*a^2*b*c*d^2 -
 36*B*a^2*b*c*d^2 + 12*A*a^3*d^3 + 12*B*a^3*d^3)/(b^3*c^3*d^5*g^5*x^4 - 3*a*b^2*c^2*d^6*g^5*x^4 + 3*a^2*b*c*d^
7*g^5*x^4 - a^3*d^8*g^5*x^4 + 4*b^3*c^4*d^4*g^5*x^3 - 12*a*b^2*c^3*d^5*g^5*x^3 + 12*a^2*b*c^2*d^6*g^5*x^3 - 4*
a^3*c*d^7*g^5*x^3 + 6*b^3*c^5*d^3*g^5*x^2 - 18*a*b^2*c^4*d^4*g^5*x^2 + 18*a^2*b*c^3*d^5*g^5*x^2 - 6*a^3*c^2*d^
6*g^5*x^2 + 4*b^3*c^6*d^2*g^5*x - 12*a*b^2*c^5*d^3*g^5*x + 12*a^2*b*c^4*d^4*g^5*x - 4*a^3*c^3*d^5*g^5*x + b^3*
c^7*d*g^5 - 3*a*b^2*c^6*d^2*g^5 + 3*a^2*b*c^5*d^3*g^5 - a^3*c^4*d^4*g^5)